RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

SECOND YEAR [BATCH 2015-18] B.A./B.Sc. FOURTH SEMESTER (January – June) 2017 Mid-Semester Examination, March 2017

Date : 15/03/2017

1.

2.

3.

COMPUTER SCIENCE (Honours)

Time : 11 am – 1 pm

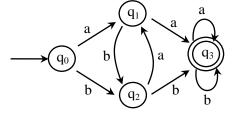
Paper : IV

Full Marks : 50

[Use a separate Answer Book <u>for each group</u>]

<u>Group – A</u>

	(Answer <u>any two</u> questions)				[2×10]
a)	What are the two models of Interprocess Communication? Explain strengths and weaknesses of two approaches.				of [5]
b)	What is the purpose of interrupts? What are the differences between a trap and an interrupt?				[3]
c)	Define Bootstrap program.				[2]
a)	Write short note on PCB.				
b)	Consider the following set of processes, with the length of the CPU burst given in milliseconds :				
	Process	Burst Time	Arrival Tim	<u>e</u>	
	P1	18	0		
	P2	16	1		
	P3	12	2		
	P4	25	3		
	Also consider 10 milliseconds for every context switch. Draw Gantt chart to illustrate SRTF and calculate average waiting time and average turn around time.				nd [5]
a)	Explain why implementing synchronization primitives by disabling interrupts is not appropriate in a single processor system if the synchronization primitives are to be used in user level				
	programs.				[3]
b)	Explain critical section problem using Producer-Consumer paradigm.				[4]


c) Explain buffering.

<u>Group – B</u>

(Answer <u>any two</u> questions) [2×7.5]

4. a) State and prove Arden's theorem.

- b) Find a C.F.G generating $\{a^{j}b^{n}c^{n} | n \ge 1, j \ge 0\}$.
 - c) Write the R.E for the language $L = \{w \text{ where} | w | \text{mod } 3 = 0, w \in (0,1)^* \}$. [1.5]
- 5. a) Find the R.E for the following transition diagram.

b) Convert the C.F.G to C.N.F. $S \rightarrow bA \mid aB$ $A \rightarrow bAA \mid aS \mid a$ $B \rightarrow aBB \mid b$ [2.5]

[3]

[3]

[3]

[5]

- 6. a) Explain Chomsky hierarchy of languages.
 - b) Convert the C.F.G to G.N.F.

 $S \rightarrow ABb \mid a$ $A \rightarrow aaA \mid B$ $B \rightarrow bAb$

<u>Group – C</u>

(Answer <u>any two</u> questions) $[2 \times 7 \cdot 5]$

[5]

[3]

[4]

[3]

[1.5]

[0.5]

[2.5]

7. a) Compute the time complexity for the following algorithm :

$$T(n) = \begin{cases} 2T(\sqrt{n}) + \lg n, & n > 1 \\ 1 & \text{otherwise} \end{cases}$$

- b) Explain the problem solution technique using any two of the following classes of algorithms:
 (i) Brute force (ii) Transform and conquer (iii) Greedy approach, and
 (iv) Dynamic programming
- c) What do you mean by efficiency of an algorithm?
- 8. a) Explain the drawback of the adjacency matrix representation of the graph? Suggest a suitable array based graph representation technique with proper explanation. [3]
 - b) Compute the time complexity for the following algorithm:

```
Algo-unknown (n)
{ k=0;
for (i=n/2; i<=n; i++)
{ for (j=2; j<=n; j++)
{ k = k+n/2;}
}
return k;
```

}

- c) Give the geometric interpretation of Big- θ .
- 9. a) Compute a minimum cost spanning tree for the graph of following figure using (i) Prim's algorighm (ii) Kruskal's algorithm [2+2]

- b) Obtain a set of optimal Huffman codes for the messages $(M_1, ..., M_7)$ with relative frequencies $(q_1, ..., q_7) = (4, 5, 7, 8, 10, 12, 20)$. Draw the decode tree this set of codes. [2.5]
- c) Show that if all internal nodes in a tree have degree k, then the number n of external nodes is such that, n mod (k-1) = 1. [1]

- × -----